Главная » 2016 » Июнь » 20 » RB30-2. В.Ф.Турчин, теория метасистемных переходов и метасистемное программирование
13:13
RB30-2. В.Ф.Турчин, теория метасистемных переходов и метасистемное программирование
Начало заметки см. RB30-1. Окончание заметки см. RB30-3. После изучения ряда позабытых работ у меня возникла идея выделить особое направление в программировании, которое затрагивало бы (объединяло в определённом аспекте) теоретическое, системное и прикладное программирование в контексте синтеза и анализа программных систем. Термин "e;метасистемное программирование"e; подсказала книга Валентина Фёдоровича Турчина "e;Феномен науки. Кибернетический подход"e; (1970). Продолжим изучать субъективный срез по этой книге применительно к термину "e;метасистемное программирование"e;. ------ Иерархия Могут ли системы формироваться исключительно на основе иерархии? Или есть другие способы организации? Сколь велика роль иерархии? Вот какова точка зрения В.Ф.Турчина: "e;Иерархия вообще — это такое построение системы из подсистем, когда каждой подсистеме приписывается определённое целое число, называемое её уровнем, причём взаимодействие подсистем существенно зависит от разности их уровней, подчиняясь некоторому общему принципу. Обычно этот принцип — передача информации в определённом направлении (сверху вниз или снизу вверх) от данного уровня к следующему. В нашем случае рецепторам приписывается нулевой уровень, и информация распространяется снизу вверх. Каждая подсистема первого уровня связана с некоторым числом рецепторов, и её состояние определяется состояниями соответствующих рецепторов. Точно так же каждая подсистема второго уровня связана с рядом подсистем первого уровня и т.д. <…> Все подсистемы промежуточных уровней также являются классификаторами. Непосредственным входом k-го уровня служат состояния классификаторов k-1-го уровня, совокупность которых является для него ситуацией, подлежащей классификации. В иерархической системе, содержащей более одного промежуточного уровня, можно выделить иерархические подсистемы, охватывающие несколько уровней. <…> Так как с каждым классификатором связана система понятий, иерархия классификаторов порождает иерархию понятий. Передаваясь от уровня к уровню, информация преобразуется, выражаясь в терминах всё более «высокопоставленных» понятий. При этом количество передаваемой информации постепенно уменьшается за счет отбрасывания информации, несущественной с точки зрения задачи, поставленной перед «верховным» (выходным) классификатором. <…> Во избежание недоразумений следует указать, что иерархия понятий, о которой мы говорим, имеет гораздо более общий смысл, чем иерархия понятий по абстрактности (общности), которую часто называют просто «иерархия понятий». Примером иерархии по общности может служить пирамида понятий, относящихся к систематике животных. На нулевом уровне располагаются отдельные особи животных («конкретные» понятия), на первом — виды, на втором — роды, затем — семейства, отряды, классы, типы. На вершине пирамиды находится понятие «животное». Такая пирамида является частным случаем иерархии понятий в общем смысле, отличающимся тем, что каждое понятие k-го уровня образуется из некоторого числа понятий k-1-го уровня путём их объединения. Это соответствует очень просто устроенным классификаторам. В общем случае классификаторы могут быть устроены как угодно. Распознаватели, нужные животному, — это скорее иерархии по сложности и тонкости понятий, а не по общности. <…> Может ли иерархия классификаторов возникнуть эволюционным путем? Очевидно, может, но при одном условии: если создание каждого нового уровня иерархии и его последующего расширения полезны животному в борьбе за жизнь. Из факта существования животных с высокоорганизованной нервной системой мы делаем вывод, что так оно и есть в действительности… Набросаем в общих чертах путь развития нервной системы. На начальных стадиях мы находим у животного всего несколько рецепторов. Число возможных способов связи между ними (соединений) относительно невелико и допускает прямой перебор. По методу проб и ошибок находится выгодное соединение. То, что выгодное соединение может существовать даже при очень малом числе нейронов, легко видеть на таком примере. Пусть есть всего два светочувствительных рецептора. Если они расположены на разных сторонах тела, то информация, которую они дают (разность освещённостей), достаточна, чтобы животное могло двигаться на свет или против света. Когда выгодное соединение найдено и осуществлено, допустим, с помощью одного промежуточного нейрона (такие нейроны называются ассоциативными), вся группа в целом может быть размножена. Так возникает система ассоциативных нейронов, регистрирующих, например, разности между освещённостями рецепторов и суммирующих эти разности. Доказав свою полезность для животного, классификаторы первого уровня прочно входят в число его средств борьбы за существование. Тогда начинается следующая серия проб и ошибок: небольшое число классификаторов первого уровня (точнее, их выходных подсистем) связывается между собой в один пробный классификатор второго уровня, пока не получится полезное соединение. Затем оказывается полезным размножение этого соединения. Можно предположить, что на втором уровне иерархии — поскольку это касается органов зрения — появляются такие понятия, как граница между светом и тенью, средняя освещённость пятна, движение границы между светом и тенью и т. п. Таким же путём возникают и следующие уровни иерархии. Набросанная нами схема наводит на мысль, что любая сложная система, возникшая в процессе эволюции по методу проб и ошибок, должна иметь иерархическую организацию. Действительно, не имея возможности перебрать все мыслимые соединения большого числа элементов, природа перебирает соединения из нескольких элементов, а найдя полезную комбинацию, размножает её и использует как целое в качестве элемента, который может быть связан с небольшим числом других таких же элементов. Так и возникает иерархия. Это понятие играет огромную роль в кибернетике. Фактически всякая сложная система, как возникшая естественно, так и созданная человеком, может считаться организованной, только если она основана на некой иерархии или переплетении нескольких иерархий. Во всяком случае, до сих пор мы не знаем организованных систем, устроенных иначе. <…> Деление системы понятий на уровни не является столь безусловным, как мы молчаливо предполагали. Могут быть случаи, когда понятия k-го уровня непосредственно используются на k+2-м уровне, минуя k+1-й. <…> Чтобы быть более универсальной, система должна быть подобной не одной пирамиде, а многим пирамидам, вершины которых расположены приблизительно на одном уровне и образуют множество понятий (а точнее, множество систем понятий), в терминах которых происходит управление действиями животного и которые обычно обнаруживаются при исследовании его поведения. Об этих понятиях говорят, что они составляют основу определённого «образа» внешнего мира, который складывается в представлении животного (или человека). Состояние классификаторов этого уровня является непосредственной информацией для исполнительной части нервной сети (т.е. в конечном счёте для эффекторов). Каждый из этих классификаторов опирается на определённую иерархию классификаторов — пирамиду, по которой движется информация так, как это было описано выше. Однако пирамиды могут перекрываться в своих средних частях (и заведомо перекрываются в своей нижней части — рецепторах). Общее число вершин пирамиды может быть теоретически как угодно велико, в частности, оно может быть много больше общего числа рецепторов. Это тот случай, когда одна и та же информация, доставляемая рецепторами, представляется множеством пирамид в множестве различных форм, рассчитанных на все случаи жизни. Отметим ещё одно обстоятельство, которое следует учитывать при поисках иерархии в реальной нервной сети. Если мы видим нейрон, соединённый синапсами с сотней рецепторов, то это ещё не значит, что он фиксирует какое-то простое понятие первого уровня типа суммарного числа возбуждений рецепторов. Логическая функция, связывающая состояние нейрона с состоянием рецепторов, может быть весьма сложной и имеющей собственную иерархическую структуру"e;. Простые и сложные рефлексы Раздражимость и нервная сеть ведут к понятиям простых и сложных рефлексов. Турчин пишет: "e;Простейший вариант нервной сети — это вообще её отсутствие. В этом случае рецепторы непосредственно связаны с эффекторами и возбуждение с одного или нескольких рецепторов передаётся на один или несколько эффекторов. Такую прямую связь между возбуждением рецептора и эффектора мы назовём простым рефлексом. <…> Простая рефлекторная связь между возбудимой и мышечной клетками естественно возникает в процессе эволюции по методу проб и ошибок: если оказывается, что корреляция между возбуждением одной клетки и сокращением другой полезна для животного, то эта корреляция устанавливается и закрепляется. При механическом копировании связанных клеток в процессе роста и размножения природа получает систему параллельно действующих простых рефлексов, подобную щупальцу гидры. Но когда в её (природы) распоряжении оказывается множество рецепторов и эффекторов, связанных попарно или локально, у неё «возникает искушение» усложнить систему связей путем введения промежуточных нейронов. Выгодность этого следует из того, что при наличии системы связей между всеми нейронами становятся возможными такие формы поведения, которые невозможны при ограничении парными или локальными связями. <…> Объединение любых подсистем, связывающих независимо друг от друга группы рецепторов и эффекторов в единую систему, всегда приводит к огромному возрастанию числа возможных вариантов поведения. Поэтому на протяжении всей истории жизни эволюция нервной системы проходит под знаком увеличения централизации. Однако централизация централизации рознь. Если связать все нейроны в один бессмысленно запутанный клубок, то, несмотря на крайнюю «централизованность» такой системы, она вряд ли будет иметь шансы выжить в борьбе за существование. Централизация ставит следующую проблему: как из всех мыслимых способов соединения многих рецепторов с многими эффекторами (с помощью промежуточных нейронов, если потребуется) выбрать такой способ, который будет каждой ситуации сопоставлять правильное, т.е. полезное для выживания и размножения, действие? <…> Понятие о рефлексе при описании поведения должно быть дополнено понятием о цели и о регулировании. Схема регулирования изображена на рис.2.6. Действие, которое предпринимает система, зависит не только от ситуации самой по себе, но также и от цели, т.е. от той ситуации, которую система стремится достигнуть. Действие системы определяется в результате сравнения ситуации и цели и направлено к устранению несоответствия между ситуацией и целью. Через блок сравнения ситуация определяет действие. Через изменение среды действие оказывает обратное влияние на ситуацию. Эта петля обратной связи является характерной чертой схемы регулирования, отличающей её от схемы рефлекса, где ситуация просто вызывает действие. <…> Мы видим, что возникновение иерархически устроенных классификаторов может быть объяснено как результат совместного действия двух основных факторов эволюции: редупликации биологических структур и нахождения полезных связей по методу проб и ошибок. <…> Редупликация различных подсистем нервной сети может породить множество различных групп классификаторов, «повисающих в воздухе». Среди них могут появиться дубликаты целых этажей иерархии, состояния которых в точности соответствуют состоянию тех «осведомлённых» классификаторов, которые получают информацию от рецепторов… В сложных системах неосведомлённые дубликаты осведомлённых классификаторов могут хранить большое количество информации. Состояния этих дубликатов мы будем называть представлениями, отдавая себе ясный отчёт, что тем самым мы даём определённую кибернетическую интерпретацию этому психологическому понятию. Очевидно, имеет место тесная связь между представлениями и ситуациями, которые ведь суть не что иное, как состояния аналогичных классификаторов, но получающих информацию от рецепторов. Цель представляет собой частный случай представления, а точнее тот случай, когда сравнение постоянного представления и меняющейся ситуации используется для выработки действия, сближающего их друг с другом. <…> Чем выше организована «осведомлённая» часть нервной системы, тем сложнее и её дубликаты (мы будем их называть фиксаторами представлений) и тем разнообразнее представления. Так как классификаторы могут принадлежать к разным уровням иерархии и ситуация может быть выражена в разных системах понятий, представления также могут различаться своим «понятийным языком», ибо они могут быть состояниями фиксаторов разных уровней. Далее, степень устойчивости состояний фиксаторов представлений также может быть весьма различной. Поэтому представления сильно отличаются по своей конкретности и стабильности. Они могут быть точными и конкретными, почти чувственно воспринимаемыми. Крайним случаем здесь является галлюцинация, которая субъективно воспринимается как реальность и на которую организм реагирует так же, как на соответствующую ситуацию. С другой стороны, представления могут быть очень приблизительными как из-за своей неустойчивости, так и из-за своей абстрактности. Последний случай часто встречается в художественном и научном творчестве, когда представления выступают как цель деятельности. Человек смутно чувствует, что ему надо, и пытается воплотить это в твёрдой предметной форме. У него долго ничего не получается, потому что его представления не обладают необходимой конкретностью. Однако в один прекрасный момент (и это действительно прекрасный момент!) он вдруг добивается своей цели и ясно осознаёт, что он сделал именно то, что хотел. <…> Мы можем определить сложный рефлекс как такой процесс, когда возбуждение рецепторов, вызванное взаимодействием с внешней средой, передаётся по нервной сети, преобразуясь ею, и активизирует определённый план действий, который тут же начинает выполняться. В этой схеме поведения все обратные связи между организмом и средой осуществляются в процессе регулирования действий планом, а в целом взаимодействие между средой и организмом описывается классической формулой "e;стимул — реакция"e;. Только теперь реакция — это активизация того или иного плана"e;. Память Что есть память в контексте теории Турчина? Что вызвало её появление в ходе эволюции? Турчин пишет: "e;Путём редупликации может быть получено, в принципе, сколько угодно фиксаторов представлений. Но тут возникает вопрос: а сколько их нужно животному? Сколько нужно дубликатов «осведомленных» классификаторов? Один? Два? Десять? Из общих соображений следует, что дубликатов нужно много. Ведь фиксаторы представления служат для организации опыта и поведения во времени. Фиксатор цели хранит ситуацию, которая должна, по идее, осуществиться в будущем. Другие фиксаторы могут хранить ситуации, которые реально были в прошлом. Временная организация опыта необходима животному, стремящемуся приспособиться к среде, в которой оно живёт, ибо эта среда обнаруживает некоторые закономерности, т.е. корреляции между прошлыми и будущими ситуациями. Можно предсказать, что после какого-то начального увеличения числа рецепторов дальнейшее совершенствование нервной системы потребует создания фиксаторов представлений, причём создания их в большом числе. Ибо нет смысла продолжать наращивать число рецепторов и классификаторов и улучшать тем самым «мгновенные снимки» окружающей среды, если система не умеет обнаруживать корреляции между ними. Но чтобы обнаружить корреляции между «мгновенными снимками», надо их где-то хранить. Так и возникают фиксаторы представлений, иначе говоря память. Хранение цели в процессе регулирования — это простейший случай использования памяти"e;. Иерархия целей и планов Иерархия распространяется не только на сами системы, но также на планы и цели. Турчин поясняет: "e;В схеме регулирования на рис. 2.6 цель изображена как нечто единое, целое. Однако мы хорошо знаем, что бывают сложные цели, в процессе достижения которых система ставит пред собой промежуточные, «частичные», цели. Мы уже приводили примеры двухфазных движений: чтобы вспрыгнуть на стул, кошка сначала приседает, а потом подпрыгивает. В более сложных ситуациях цели образуют иерархию, состоящую из многих уровней. Предположим, вы ставите перед собой цель приехать из дома на работу. Это ваша «высшая» цель в данный момент. Припишем ей индекс (номер уровня) нуль. Чтобы приехать на работу, вам нужно выйти из дома, пройти к остановке автобуса, доехать до нужной остановки и т.д. Это цели с индексом минус единица. Чтобы выйти из дома, надо выйти из квартиры, спуститься в лифте и выйти из подъезда. Это цели с индексом минус два. Чтобы спуститься в лифте, надо открыть дверь, войти в лифт и т.д. — индекс минус три. Чтобы открыть дверь лифта, надо протянуть руку к дверной ручке, нажать на неё и потянуть к себе — индекс минус четыре. Эти цели можно уже, пожалуй, считать элементарными. Цель вместе с указанием способа её достижения, т.е. разложения на подчинённые цели, называют планом действия. Наш пример есть фактически описание плана приезда на работу. В цели самой по себе, которая в данном случае есть представление «я — на рабочем месте», никакой иерархической структуры нет. Основной логической единицей, образующей иерархию, является план, а цели образуют иерархию лишь постольку, поскольку они являются элементами плана"e;. Структурные и функциональные схемы Кибернетическая система может рассматриваться с разных позиций. Наиболее важны её аспекты с позиций, соответственно, пространства и времени: внутреннее устройство (структура, связи) и внешнее поведение (наблюдаемые законы функционирования). Очевидно, это даёт основание говорить о структурных и функциональных схемах систем. В.Ф.Турчин пишет: “На структурной схеме кибернетической системы указывается, из каких подсистем состоит данная система. Часто указывается также, как направлены потоки информации между подсистемами. Тогда структурная схема превращается в граф. В математике называют графом систему точек (вершин графа), некоторые из которых соединены линиями (дугами). Граф называется ориентированным, если на каждой дуге указано определённое направление. Структурная схема с указанием потоков информации есть ориентированный граф, вершины которого изображают подсистемы, а дуги — потоки информации. Такое описание кибернетической системы не является единственно возможным. Часто нас интересует не столько структура системы, сколько её функционирование, действие. Ещё чаще мы просто ничего не можем сказать толком о структуре, но кое-что можем сказать о функционировании. В таких случаях можно построить функциональную схему. Это тоже ориентированный граф, но вершины здесь изображают различные множества состояний системы, а дуги — возможные переходы между состояниями. Дуга соединяет две вершины в направлении от первой ко второй в том случае, если хотя бы из одного состояния, относящегося к первой вершине, возможен переход в какое-либо состояние, относящееся ко второй вершине. Множества состояний мы будем называть обобщёнными состояниями. Следовательно, дуга на схеме указывает возможность перехода из одного обобщённого состояния в другое. Если структурная схема отражает главным образом пространственный аспект, то функциональная — главным образом временной. Формально в соответствии с данным выше определением функциональная схема вообще никак не отражает пространственного аспекта — разделения системы на подсистемы. Однако, как правило, разделение на подсистемы находит отражение в способе определения обобщённых состояний, т.е. разделения множества всех состояний системы на подмножества, «приписанные» к различным вершинам графа"e;. Феноменологическое описание Эмпирическое знание, философия опыта, анализ внешних проявлений, одним словом, феноменология — это подчас тот единственный инструмент, который имеется в нашем распоряжении для изучения той или иной системы. В.Ф.Турчин пишет: “Итак, формально, действие на функциональной схеме — это множество состояний. Но сказать, что данное действие есть какое-то множество, — это почти ничего не сказать. Надо уметь определить это множество. И если мы не знаем структуры системы и способа её функционирования, то сделать это строго практически невозможно. Остается довольствоваться неполным, феноменологическим определением, основанным на внешне проявляемых следствиях внутренних состояний. Вот такими-то функциональными схемами с более или менее точно определёнными действиями в вершинах графа и описывается поведение сложных, неизвестно как устроенных систем, подобных животным или человеку… Феноменологический подход к деятельности мозга осуществляется двумя науками: психологией и бихевиористикой (изучение поведения). Первая основана на наблюдениях субъективных (изнутри), вторая — объективных (извне). Они тесно связаны между собой, и часто их объединяют под общим названием психологии. <…> Каковы же структурные схемы, реально возникшие в процессе эволюции? Увы, пока мы этого достоверно не знаем. Поэтому-то нам и пришлось перейти к функциональным схемам. И это только первое из ограничений, которые мы будем вынуждены накладывать на стремление к точному кибернетическому описанию высшей нервной деятельности. Мы очень мало знаем сейчас о кибернетической структуре и работе мозга высших животных и, тем более, человека. Собственно говоря, мы почти ничего не знаем. Есть только отдельные факты и предположения. Поэтому в дальнейшем анализе нам придется опираться главным образом на феноменологию — данные бихевиористики и психологии, где дело обстоит несколько лучше"e;.
Просмотров: 27 | Добавил: AdnrNick | Рейтинг: 0.0/0
Всего комментариев: 0
avatar